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DIFFUSION IN LAMINAR PIPE FLOW 

BRUCE HUNT 
Civil Engineering Department, University of Canterbury, Christchurch 1, New Zealand 

(Received 2 April 1976 and in revisedform 26 July 1976) 

Abstract-A combination of analytical reasoning and experimental observation is used to investigate the 
spreading of a solute that has been injected in fully-developed, laminar pipe flow. The results indicate that 
diffusion in laminar flow depends very much upon the magnitude of a dimensionless parameter, E, that is 
analogous to the reciprocal of the P&cl& number of heat transfer. Most of the previous work in this area 
appears to apply for relatively large values ofs, and perturbation methods are used to obtain some solutions 

for relatively small values of E. 

NOMENCLATURE 

Co7 first-order, outer concentration; 

CFo, CRo, first order, inner concentrations; 

c, concentration; 

co, maximum concentration at t = 0; 

c.7 cross-sectional average concentration; 

Q molecular diffusion coefficient ; 
K one-dimensional dispersion coefficient; 

L initial length of dye slug; 

1, length over which &Jaz is appreciable; 

2, 
radial coordinate; 
pipe radius; 

6 time; 

u, maximum velocity; 
u(x, Y),longitudinal velocity distribution; 

x, Y, lateral coordinates; 

z, axial coordinate. 

Greek symbols 

s, D/UR; 

5,5’, t, 7’3 coordinates for the inner problems. 

INTRODUCTION 

A SOLUTE injected into the fully-developed, laminar 
pipe flow depicted in Fig. 1 will disperse throughout 
the flow because of (1) diffusion, which results from 
relative motion between molecules of the solute and 
fluid, (2) convection, which transports the solute 
downstream and spreads it as a result of the non- 
uniform velocity distribution and (3) gravitational 

FIG. 1. Definition sketch for diffusion in laminar pipe flow. 

effects, which are the result of density differences 
between the fluid and injected solute. Density differ- 
ences will be considered negligible herein, so that axi- 
symmetric diffusion in the laminar pipe flow of Fig. 1 
can be described mathematically by solutions to the 
following equation (Taylor [ 11): 

D[g+;) + $1 
=(,J l- f 

2 ac ac 

[ 01 z+Tt* (1) 

In equation (l), D = molecular diffusion coefficient, U 
= maximum, center-line velocity, R = pipe radius, c 
= solute concentration, r and z = cylindrical coor- 
dinates and t = time. The left side of equation (1) 
describes spreading by molecular diffusion, and the 
right side describes spreading by convection. 

Griffiths [2] reported in 1911 the experimental 
result that a drop of fluorescent tracer solution injected 
into water flowing very slowly through a capillary tube 
spread symmetrically outward from a point of max- 
imum concentration and that this point of maximum 
concentration moved with the average discharge vel- 
ocity of the flow. In 1953 Taylor [l] attempted to 
quantify Griffith’s experimental observations by writ- 
ing equation (1) in a form 

in which c, = average concentration over the pipe 
cross section, U, = average discharge velocity (a con- 
stant) and 

D2TT2 
KEfY-2. 

480 
(3) 

Taylor [l] also placed the following restriction upon 
solutions to equations (2) and (3): 

D 1 R 
->>-----. 
UR 3.8* 1 

(4) 

The variable 1 is defined by Taylor [3] as “the 
longitudinal extent of the region in which &JJdz is 
appreciable”. Equations (2) and (3) suffer from the 
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almost obvious limitations that they cannot hold in the 
two limits when either D + 0 or U, + 0. The first 
limitation was recognized by Taylor [I] in equation 
(4) but the second limitation was not recognized until 

one year later when Taylor [3] replaced equation (4) 

with 

1 D 1R 
-->>->>--- 
13.8 UR 8 1 

Taylor [l] was able to obtain experimental verific- 
ation of his solutions to equations (2) and (3) over a 
limited range of values for D/UR. 

In 1956 Aris [4] integrated equation (1) throughout 
the tube to solve for moments of c. His method is 
without restriction upon the values of DJUR, although 

only macroscopic characteristics of the distribution of 
c can be obtained from his analysis. One of the most 

important results of this study was to modify Taylor’s 
expression for K in equation (3) and, as a result, to 

replace equation (5) with a less restrictive condition. 
This same result can be obtained in a different way by 

integrating equation (1) over the cross section of the 

pipe and making use of the definition for an average 
concentration 

3 C.R 
ca s ” 

R2 J o CT dr. 
Then, if use is made of the facts that c, is independent of 
r, that &/ar vanishes at both r = R and r = 0 and that 

U = 2U, for laminar flow, equation (1) can be put in 
the exact form 

2 

Dh$+!!!& 

s 

R 

(c - c,)r3 dr 
’ 0 

Equation (7) was first obtained by Philip [S] for 
slightly different purposes. Equation (7) has certain 
similarities to the von Karman integral equation of 

boundary-layer theory, and one suspects that a quite 
accurate, approximate differential equation for c, 
might be obtained if a reasonably accurate expression 
for the variation of (c -c,) over the pipe cross section 
could be substituted into the definite integral. Taylor 
[l, 31 assumed, on the basis of a “quasi-steady” 
solution of equation (1) when written in a coordinate 

system that translates with the discharge velocity, U,, 
that 

(c-cc,) = !g++(TJ_~(;~]. (8) 

Substitution of equation (8) into equation (7) then gives 
equation (2) with K redefined as 

R2U2 
K-D+2 

480 . 
(9) 

Taylor [ 1,3] obtained equation (3) instead of equation 
(9) because he chose to ignore the second term on the 
left side of equation (1). 

Equations (2) and (9) reduce to the correct equations 

in the limit as U, -+ 0, so that it might be expected that 
equation (5) could be replaced with 

D 1R 
cu 2 ->> --- 

UR 81 

Indeed, Aris [4] implies this when he states, on the 

basis of his analysis by moments, that equation (9) “is 

true without any restriction on the value of D/UR, or 
on the distribution of solute”. A restriction similar to 

the one on the right side of equation (10) still exists, 
however, since Aris [4] obtains equation (9) as a result 
only after letting time, and therefore, I, become large. 
Also, equations (2) and (9) do not reduce to the correct 

equations as D --* 0, so that the results of Taylor and 
Aris must be invalid for small enough values of D/UR. 
Of particular importance to this study is the obser- 
vation that equations (2) and (9) will give an accurate 

solution for c, only when Taylor’s approximation for 
(c -c,) in equation (8) is reasonably accurate. It will be 
seen later that equation (8) is an extremely poor 
approximation for very small values of D/UR, which 
also implies that a restriction similar to the RHS of 

equation (10) must be placed upon equations (2) and 

(9). 
Bailey and Gogarty [6] obtained numerical sol- 

utions of equation (1) by neglecting, as did Taylor 
[1,3], the term a2c/dz2. Then they compared their 

numerical solutions with one of Taylor’s solutions and 
with some experimental results of their own. All of 
their work was carried out for about the same range of 

values of D/UR as Taylor’s earlier work, and they were 
able to obtain extremely close agreement with both 
Taylor’s solution and Taylor’s expression for (c -c,) in 

equation (8). 
Lighthill [7] obtained some results for a slightly 

different aspect of the same problem. Lighthill, while 
working upon problems in blood flow, became in- 
terested in obtaining solutions in the region between 
the time of release of the solute and the time at which 
Taylor’s and Aris’s results become valid. During this 

period the solute has not yet had enough time to travel 
a distance of one pipe diameter by diffusion alone, and 
the actual concentration distribution is a perturbation 
of the solution with zero diffusion. Lighthill, after 

dropping the term a2c/dz2 in equation (l), found an 
exact solution of the resulting approximate equation. 
This solution was sinusoidal in z, so that superposition 
and the Fourier transform were used to find a more 
general solution for the initial condition c =f(z) at t 
= 0. The solution ignored the boundary condition 

ac,h?r = 0 on the pipe wall since the solute did not have 
enough time to reach the pipe walls by molecular 
diffusion. The integral solution was too complicated to 
evaluate exactly, and the method of steepest descents 
was used to obtain an asymptotic approximation, in a 
fairly complicated form, for large values of R2/4Dt. 

Anathakrishnan, Gill and Barduhn [8] obtained 
finite-difference solutions of equation (1) for both large 
and small values of DIUR. This was done, however, by 
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first introducing the transformation of variables 

(y,x,r) = [;.&(;y2.;]. 

Thus, numerical solutions of the resulting equation are 
not suitable for taking the limit D--t 0, and the 
numerical results for small values of D/UR are of 
doubtful accuracy. 

Finally the literature survey can be completed by 
noting that Gill [9] and Chatwin [lo] have carried out 
calculations to define more precisely the range over 
which the solutions of Taylor and Aris are valid. Their 
results are only valid for a limited range of D/UR that 
is given approximately by equation (lo), and satisfac- 
tory solutions for small values of DjUR have yet to be 
obtained. 

PROBLEM DEFINITION AND FORMULATION 

Let co = the maximum value of c at t = 0. Then it 
beco?es convenient to introduce the following dimen- 
sionless variables: 

(c*, r*, z*, t*,.c) = 
c r z Ut D 

-. 
;'ii'ii'?UR > 

(11) 

If the dimensionless variables in equation (11) are 
substituted into equation (l), and if the asterisk 
superscript is omitted for notational convenience, 
equation (1) takes the following form: 

E[iz(rz) +$] = (1-r2)g+$. (12) 

The dimensionless parameter E z D/UR, which is 

analogous to the reciprocal of the P&cl& number of 
heat transfer, can be characterized physically as a 
measure of the ratio of a diffusive velocity in motion- 
less fluid to the maximum flow velocity at the pipe 
center. Taylor [l, 31 recognized, in equations (4) and 
(5), that E = D/UR plays an important role in de- 
termining the behavior of solutions to equation (12). 
An idea of how much diffusion experiments are affected 
by changing the magnitude of E can be obtained by 
looking at the experiments shown in Figs. 2-4. These 
experiments were conducted by submerging clear, 
rigid, plastic pipe (ID = 0.551 in = 1.4 cm) in water. 
Flow rates were controlled in Fig. 4 with a needle valve 
at the downstream end and in Fig. 3 by dripping water 
through a fine hypodermic needle at the downstream 
end. A slug of dye was introduced at the upstream end 
of the pipe, as shown in Fig. 2, and photographed later 
at points downstream, as shown in Figs. 3 and 4. The 
ratio R/l was estimated visually in Fig. 3 to be 2.92 
x 10-3, and values of E and Reynolds numbers were 
calculated as 1.37 x 10e3 and 0.643, respectively. Thus, 
conditions in Fig. 3 satisfy Taylor’s inequality 5, and 
the experiment shown in Fig. 3 should be accurately 
described by Taylor’s theory. Visual inspection of the 
experiment revealed that radial variations in c ap- 
peared small, that the dye slug appeared symmetric 
about its center and that the center of the dye slug 
moved at about the mean discharge velocity of the flow 
(U, = 0.613 ft/h = 0.187 m/h). The experiment shown 
in Fig. 4 had a value of E that was three orders of 
magnitude smaller (E = 1.47 x 10-6, Reynolds 
number = 601, U, = 1.91 in/s = 4.85 cm/s). Figure 4 
shows sharp, almost discontinuous changes in dye 
concentration with zero concentration in a relatively 

FIG. 2. Dye slug at start of the experiment. 

FIG. 3. F,ont of the dye slug at a distance of 614 radii downstream (E = 1.38 x lo-‘, Reynolds numbel 
= 0.643). 
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FIG. 4. Front of the dye slug at a distance of 1000 radii downstream (E = 1.47 x 10b6, Reynolds number 
= 601). 

large region near the pipe walls. Thus, equation (8) is a 
hopelessly inadequate description of the concentration 
across all cross sections, and Taylor’s theory could not 
be applied. Convective velocities in Fig. 4 are very 
much greater than diffusive velocities, and the resulting 
concentration distribution is really a perturbation of 
the solution with zero diffusion. Hence, the techniques 
of singular perturbation theory, as described by Cole 
[ 1 l] and Van Dyke [12], will be used to solve equation 
(12) for flows similar to the one shown in Fig. 4, in 
which E = D/VR -+ 0. Thus, these solutions will be 
valid in at least part of the region for which Taylor’s 
results are invalid, as shown by equation (10). 

Boundary and initial conditions for equation (12) 
will be taken as 

acu,z,t) -=o, (O<z,t<co) 
ar 

c(r,z,O)= 1, (O<z<L,O<r< 1) (14) 

=o, (L<z<co,O<r<l). 

Equation (13) prevents the solute from being diffused 
through the pipe walls, and equation (14) is the initial 
condition shown in Fig. 2. The distance L in equation 
(14) is .dimensionless and, thus, is measured in mul- 
tiples of R. 

PROBLEM SOLUTION 

First-order, outer solution 

The first-order, outer solution for small E is found by 
substituting into equations (12)-(14) the following 
expansion, in which the omitted, higher-order terms 
vanish as E -+ 0: 

c(r,z,t;s) = C,(r,z,t)+O(Jc). (15) 

If the limit E + 0 is taken, it is found that C, satisfies the 
same boundary and initial conditions as c [given by 
equations (13) and (14)] and the following first-order, 
partial differential equation: 

(l-r’)f$+z=O. 

Equation (16) is equivalent to the ordinary differential 
equation 

dG -= 0 
dt 

evaluated along the characteristic 

g = (1-r’). (18) 

Since r is treated as a parameter in equations (17) and 
(18), these equations can be integrated along a charac- 
teristic and the integration constants can be evaluated 
at a point (z,, t, = 0) upon the characteristic to obtain 

Co = constant = 1, (0 < z1 < L,O < r < 1) 

(19) 
= 0, (L < z1 < co,0 < r < 1) 

along the characteristic curve 

z-(l-rrZ)t = constant = zl. (20) 

Elimination of the constant parameter z1 between 
equations (19) and (20) gives the first-order, outer 
solution in Eulerian coordinates as 

&(r,z,t) = 1, [0 < z-(1-rrZ)t < L,O < r < l] 

= 0, [L < z-(1-rr2)t < co,0 < r < 11. 

(21) 

The first-order concentration wave given by equation 
(21) is plotted in Fig. 5 and is seen to be simply the 
original slug of dye convected by the parabolic velocity 
distribution without molecular diffusion. This solution 
satisfies the initial and boundary conditions for c 
exactly, but, since the diffusion terms do not appear in 
equation (16), discontinuities in concentration occur at 
the front and rear of the wave. Thus, boundary layers 
form at these discontinuities as a result of molecular 
diffusion, andit is necessary to obtain first-order inner 
solutions along each of the two discontinuities. 

First-order, inner solutions 
A first-order, inner solution for the wave front is 

obtained by replacing t with the following, “magnified” 
variable 

t(l-r2)-z+L 
z%! 

Js . 
(22) 

The variables in the numerator of equation (22) were 
chosen so that z vanishes along the discontinuous 
wave front, and the scaling factor in the denominator 
was chosen so that a non-trivial equation results when 
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WAVE FRONT : Z-(l-r*H = L 

FIG. 5. A plot of the first-order, outer solution. 

7 is introduced into equation (12) for t. Making the The problem defined by equations (27)-(30) is a well- 
change of variables (r, z, t) -+ (r, z, T) in equation (12) known problem in heat conduction that has the 
gives solution 

I[ 18 
E 

2(z-L+zJ&) a 

r ar (1 -r’)Je a7 1 CF,= i[ l+erf(+)] (31) 

[ 

ac 2r2(z-L+zJE) a~ 

x ‘lr- 1 (1-?)Js Z 

+[:-+&:][;-+&:]j 

in which erf is the error function. 
A first-order, inner solution for the wave rear can be 

obtained in exactly the same way as for the wave front 
by defining 

=(I-?):. 
7’ 55 

t(l-?)-2 

(23) Je 
(32) 

An inner expansion for the wave front can be assumed 
in the form 

Z 

[ 

4r2z2 

5’3 (l-r2) ’ + 3(1_r2)2 1 (33) 

c(r, z, 7; E) = Go (r, z, 7) + O(JE). (24) c(r, 5, r) = CR,(5’, r’) + K/s). (34) 

Substitution of equation (24) into equation (23) and Then C’s, is found to be a solution of the following 

_ problem : taking the limit as E + 0 gives 

a2cR, acR, -=- 
a712 ay F 4rZ(z - L)2 a2cF, 

l + (1+.2)2 x = 1 
(I-r2)%. 

Equation (25) can be simplified by setting 

5 E = 1 + 4;;“;2;J2 dz H L 1 (1-r2) 
(Z-L) 

[ 

4r2(z-L)2 

(1-r’) ’ + 3(1-r2)2 1 ’ 
Thus, replacing z with 5 in equation (25) gives 

d2CF, dCF, -== 
a72 ag . 

(35) 

Matching, which can be done by writing C,,(& r) and 
C,Jr,z, t) in terms of r, z, t and E and r, 5, 7 and E, 
respectively, taking the limits as E + 0 and equating the 
results, gives the boundary conditions 

C,“(L +a) = 1 (28) 

C&, - co) = 0. (29) 

The correct initial condition is CR0 

c&7) = 1, (T > 0) 

(30) 
= 0, (7 < 0). 

(25) CR& + a, 5’) = 0 (36) 

C,,( - 00,-l’) = 1 (37) 

CR,,(7’,0) = 0, (7’ > 0) 

(38) 
= 1, (7’ < 0). 

(26) The solution to equations (35))(38) is 

CRo= i[ 1 -“f(G)]. (39) 

(27) 

First-order, composite solution 
Typical plots of the inner and outer solutions, for 

fixed values of r and t, are shown in Fig. 6. A careful 
study of this plot suggests that a uniformly valid, 
composite solution can be defined in the following 
way : 

C = CF,-(~-CR& [(l-r2)t+L <z < c0] 

= l-(I-CR,)--(I-CF,), 

[(l-r2)t < z < (l-r2)t+L] 

= CR,-(l-c~o)r [o<Z< (I-r2)t]. (40) 



FIG. 6. Plots of the inner and outer solutions for particular 
values of r and t. 

Hence, the uniformly valid, composite solution has the 

following very simple form : 

c(r,z,t;s) = f[erf(+) - erf(&)] 

+O(JE), (O<z,t< co,o,<r< 1). (41) 

Careful examination of equation (41) and the analy- 
sis leading to equation (41) reveals that the boundary 
condition at the pipe wall, equation (13) is not 
satisfied. This implies that equation (41) will become 
invalid in regions where measureable concentrations 
occur next to the wall since equation (41) permits 

solute to diffuse through the wall of the mathematical 
model. When E 3 D/UR is small, convective velocities 
near the pipe center are much larger than diffusive 
velocities and dye near the pipe center will be convected 

downstream before it has a chance to diffuse to the pipe 
walls. Thus, for small enough E there is always a region 
near the dye front nose where zero concentrations exist 
next to the wall, as shown in Fig. 4. On the other hand, 
a small portion of the dye that was initially injected is 
soon left far behind because it is contained in a thin 
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region next to the wall where convective velocities are 
as small, or smaller, than diffusive velocities. In this 
region equation (41) is invalid because dye does not 
diffuse through the experimental boundary. Experi- 

ments conducted by the writer, physical reasoning and 
calculations made with equation (41) all seem to 
indicate that, for small E, the length of pipe over which 

wall concentrations are measureable grows with time 

but does not grow as rapidly as the length of pipe for 
which wall concentrations are negligible. For example, 

the band of zero concentration next to the pipe wall 
shown in Fig. 4 extended from the nose to a point just 

slightly downstream from where the dye was initially 
injected. Thus, equation (41) should be a valid de- 
scription throughout a substantial portion of the 

region of interest. 
Plots of concentration distributions calculated from 

equation (41) are shown at three different times in Figs. 
7--9 for E = 1O-4 and L = 1. Also shown are the outer 

solutions given by equation (10) which makes it 
relatively easy to see the effect of molecular diffusion in 

the problem. The values of both L and E in Figs. 7-9 
and Fig. 4 differ considerably. However, several sim- 
ilarities can be seen between the theoretical plots and 

the experimental photograph. Most notable are the 
relatively wide regions of zero concentration near the 
pipe wall. Also, careful observation of Fig. 4 reveals the 
core of zero concentration near the pipe center (behind 

the nose of dye), although this is obscured somewhat 
because the core is in the center of an annular region of 
dye. Experience in trying to calculate finite difference 

solutions in regions where concentrations vary as 
rapidly as those in Figs. 7-9 has convinced the writer 
of the futility of trying to verify equation (41) with 
numerical solutions. Experimental measurements 

might be better for this purpose, although they would 
be difficult to take accurately in such flows. 

OTHER SOLUTIONS 

It is quite possible to use the same perturbation 
methods to obtain solutions for other boundary or 

- 
D/UR =0 
Ut/ R = 10 

L/R = 1 

D/JR =10-L 
Ut/R = 10 

L/R = 1 

FIG. 7. Concentration distributions plotted from equations (21) and (41). 
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D/UR = 0 

UifR = 100 

L/R= 1 
c/h = 0 

FIG. 8. Concentration distributions plotted from equations (21) and (41). 

\ 
D/UR : lo-” 

c/c,=o.or 
Ut/R 0 too0 

C/R 1 t 

9 

FIG. 9. Con~tration distributions plotted from equations (2i) and (41). 

initial conditions. For example, the previous problem 
can be solved with the initial condition, given by 
equation (14}, replaced by the following initial and 
boundary conditions: 

e(r,z,O) = 0, (0 <I < I,0 < z < co) (42) 

c(r, 0, t) = 1, (0 6 r < 1,O < t < co). (43) 

The solution is 

in which r’ and c’ are given by equations (32) arid (33). 
The more general problem for diffusion in uniform, 

laminar flow through any prismatic conduit, such as 
the conduit shown in Fig. 10, can be found by solving 

the following equation: 

( a*c PC a2c 

> 

ac ac 
E----l- ax* ay* 

--ifs =u(&Y)~+~. (45) 

The x, y and z coordinates in equation (4.5) have been 
made dimensionless with a characteristic lateral di- 
mension of the conduit, and u(x, y) has been made 
dimensionless with the maximum longitudinal flow 
velocity. The solution of equation (45) satisfying the 
intial and boundary conditions given by equations (13) 
and (14) is 

= f[ erf(&) - erf(+)] + W./s) (46) 
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FIG. 10. Definition sketch for diffusion in laminar flow 
through any prismatic conduit. 

in which 7,(, 7’ and 5’ are defined as 

tu(x,y)-z+L 
7I 

JE 

z’ c Lim 7 

L-o 

5’ = Lim 5. 
L-o 

(47) 

(48) 

(49) 

(50) 

Equations (46)-(50) reduce to equations (22), (26), (32), 
(33) and (41) when the cross section of the conduit is 
circular. Thus, they include solutions for flow through 

circular conduits, two-dimensional conduits and pris- 
matic open channels as special cases. The solution 
satisfying the initial and boundary conditions given by 

equations (42) and (43) is 

c(x,y,z,t;e) = $1 +erf[&J] + O(Je). (51) 

CONCLUSIONS 

Solutions to diffusion problems in uniform, laminar 
flow are highly dependent upon the magnitude of the 
dimensionless parameter E. Most of the earlier work, 

which is based upon the work by Taylor [7,8], is valid 

for relatively large values of E. The results obtained 
herein, which include solutions for flow through any 
prismatic conduit or open channel with several sets of 
boundary and initial conditions, are valid for relatively 
small values of &. It is probable that a transition region 

also exists for which solutions are not yet available, 
and experimental work needs to be done in order to 
obtain more accurate limits for the ranges of I: in which 
these various solutions are valid. 
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DIFFUSION DANS UN ECOULEMENT LAMINAIRE EN CONDUITE 

Rbsum&On utilise une combinaison d’un raisonnement analytique et d’une observation exerimentale 
pour ttudier la dispersion d’un solutC inject& dans un Ccoulement pleinement developpe et laminaire 
dans un tube. Les r&&tats montrent que la diffusion en tcoulement laminaire dtpend beaucoup de la 
valeur d’un paramttre adimensionnel E qui est analogue g I’inverse du nombre de P&let en transfert 
thermique. La plupart des travaux dans ce domaine concerne des valeurs relativement Clevkes de E et on 

utilise ici la mtthode des perturbations pour obtenir des solutions pour des valeurs faibles de E. 

DIE DIFFUSION IN LAMINARER ROHRSTROMUNG 

Zusammenfaswng-Eine Kombination aus analytischer Betrachtung und experimenteller Beobachtung 
wird zur Untersuchung des Ausbreitens eines 18sungsfghigen Stoffes, der in eine voll ausgebildete laminare 
RohrstrBmung eingefiihrt wird, herangezogen. Die Ergebnisse zeigen, dal3 die Diffusion in laminarer 
Striimung sehr stark von der GraBe des dimensionslosen Parameters E abhshgt, der analog dem 
Kehrwert der Peclet-Zahl fiir den Wtieiibergang ist. Ein groljer Teil der vorliegenden Arbeiten scheint 
sich nur auf relativ grol3e Werte von E zu beziehen; fiir relativ kleine Werte von E erhalt man einige 

LGsungen mit Hilfe von Stiirungsmethoden. 
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~MWPY3MEl B JlAMMHAPHOM IlOTOKE B TPYBE 

hl&lOTil~Hfl- C IIOMOIAblO aHanllTWeCKOl-0 MeTOAa W 3KCnepHMeHTanbHblX Ha6nloAeHHP WCCne- 

AyeTCSl IlpOUeCC paCIlpOCTpaHeHWl paCTBOpa, BBOAHMOrO B IlOnHOCTbtO pa3BHTbIk naMHHapHbIti 
~OTOKBTpy6e.~e3ynbT~TbI~OKa3bIB~~T,~TOHaA~~~y3~~BnaMWHa~HOM tlOTOKeCAnbHOBnWIleT 
BenwwiHa 6e3pa3MepHOrO napaMeTpa E, aHanOrwHor0 06paTHoMy 3HaqeHWH) wcna neKne Anr# 
npouecca TennOO6MeHa. ~OBHAHMOM~, B 60nbLuHHcTBe npenblAymHx pa6oT B 3T0ii o6nacTe pac- 
CMaTpBBUiCbOTHOCHTenbHO6onblLIWe 3HaqeHnRnapaMeTpa&.Ann nony~eHWIHeKOTOpblXpeUleHEiti 

IlpkiOTHOCHTenbHOManblX 3HaWHWIXE WSlOJlb3yKITUl MeTOAbI BO3MyUleHHk. 


